Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

$\mathrm{La}_{5} \mathrm{Mo}_{6} \mathrm{O}_{21}$: a novel ternary reduced molybdenum oxide containing $\left\{\mathrm{Mo}^{\mathrm{IV}}\right\}_{3}$ clusters and isolated Mo^{V} centres

P. Gall and P. Gougeon*

Laboratoire de Chimie du Solide et Inorganique Moléculaire, UMR-CNRS
No. 6511, Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes Cedex, France
Correspondence e-mail: patrick.gougeon@univ-rennes1.fr
Received 1 April 2005
Accepted 13 May 2005
Online 11 June 2005

The crystal structure of $\mathrm{La}_{5} \mathrm{Mo}_{6} \mathrm{O}_{21}$ (pentalanthanum hexamolybdenum henicosaoxide) is made up of $\mathrm{Mo}_{3} \mathrm{O}_{13}$ units containing triangular $\left\{\mathrm{Mo}^{\mathrm{IV}}\right\}_{3}$ clusters, three distorted $\mathrm{Mo}^{\mathrm{V}} \mathrm{O}_{6}$ octahedral units and six interstitial $\mathrm{La}^{\text {III }}$ atoms. The $\mathrm{Mo}_{3} \mathrm{O}_{13}$ unit consists of three edge-sharing $\mathrm{Mo}^{\mathrm{IV}} \mathrm{O}_{6}$ units involving $\mathrm{Mo}-\mathrm{Mo}$ bonding. The three $\mathrm{Mo}^{\vee} \mathrm{O}_{6}$ octahedra share their corners or edges with each other and with the $\mathrm{Mo}_{3} \mathrm{O}_{13}$ units.

Comment

The $M_{2} \mathrm{Mo}_{3} \mathrm{O}_{8}$ compounds ($M=\mathrm{Mg}, \mathrm{Zn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Zn}$ and $\mathrm{Cd})$ were the first identified reduced molybdenum compounds containing $\mathrm{Mo}_{3} \mathrm{O}_{13}$ cluster units made up of three edgesharing octahedral MoO_{6} units (McCarroll et al., 1957). In these compounds, the Mo atoms form strongly bonded triangular clusters containing six d electrons that fill three bonding orbitals. Six-electron Mo_{3} clusters are also found in the quaternary compounds $\mathrm{Li} R \mathrm{Mo}_{3} \mathrm{O}_{8}(R=\mathrm{Sc}, \mathrm{Y}, \mathrm{In}, \mathrm{Sm}, \mathrm{Gd}, \mathrm{Tb}$, $\mathrm{Dy}, \mathrm{Ho}, \mathrm{Er}$ and Yb ; McCarroll, 1977). Subsequently, Mo_{3} clusters containing seven d electrons were observed in $\mathrm{LiZn}_{2} \mathrm{Mo}_{3} \mathrm{O}_{8}$ and $\mathrm{ScZnMo}{ }_{3} \mathrm{O}_{8}$, and clusters containing eight electrons were observed in $\mathrm{Zn}_{3} \mathrm{Mo}_{3} \mathrm{O}_{8}$ (Torardi \& McCarley, 1985). In addition, the $\mathrm{Mo}_{3} \mathrm{O}_{13}$ cluster unit has also been observed in co-existence with the tetrahedral MoO_{4} unit in $\mathrm{Na}_{2} \mathrm{In}_{2} \mathrm{Mo}_{5} \mathrm{O}_{16}$ (Collins et al., 1989) and with the octahedral MoO_{6} unit in $\mathrm{La}_{3} \mathrm{Mo}_{4} \mathrm{SiO}_{16}$ (Betteridge et al., 1984). In $\mathrm{Na}_{2} \mathrm{In}_{2} \mathrm{Mo}_{5} \mathrm{O}_{16}$, the number of electrons per Mo_{3} cluster has been evaluated as six, the Mo atom of the MoO_{4} unit having a valence of +6 . The present paper reports the synthesis and crystal structure of a new $\mathrm{Mo}_{3} \mathrm{O}_{13}$ cluster compound, $\mathrm{La}_{5} \mathrm{Mo}_{6} \mathrm{O}_{21}$. The structure of $\mathrm{La}_{5} \mathrm{Mo}_{6} \mathrm{O}_{21}$ is made up of $\mathrm{Mo}_{3} \mathrm{O}_{13}$ units containing triangular Mo_{3} clusters (Fig. 1) and distorted MoO_{6} octahedra that are corner- or edge-shared in a complex manner, as shown in Fig. 2. The $\mathrm{Mo}_{3} \mathrm{O}_{13}$ units share atoms O14 and O17 to form infinite chains parallel to the a axis. The Mo-Mo distances within the Mo_{3} triangle are
2.5548 (6), 2.5574 (6) and 2.5672 (4) \AA, with an average value of $2.560 \AA$. This value differs from the values of 2.524 (2) and 2.6164 (5) \AA found in $\mathrm{Zn}_{2} \mathrm{Mo}_{3} \mathrm{O}_{8}$ and $\mathrm{Na}_{2} \mathrm{In}_{2} \mathrm{Mo}_{5} \mathrm{O}_{16}$, respectively, which also contain six d electrons per $\mathrm{Mo}_{3} \mathrm{O}_{13}$ cluster. Furthermore, the shortest intercluster Mo-Mo distance is here 3.1489 (4) \AA, compared with 3.1695 (5) and 3.235 (2) \AA in $\mathrm{Na}_{2} \mathrm{In}_{2} \mathrm{Mo}_{5} \mathrm{O}_{16}$ and $\mathrm{Zn}_{2} \mathrm{Mo}_{3} \mathrm{O}_{8}$, respectively. The $\mathrm{Mo}-\mathrm{O}$ distances around atoms Mo1, Mo2 and Mo6 range from 1.785 (4) to 2.236 (4) \AA, while those around the Mo atoms of the Mo_{3} cluster are between 1.924 (4) and 2.110 (4) \AA. From these Mo-O bonds, we could estimate the oxidation state of each independent Mo atom by using the empirical bond-length-bond-strength relationship developed by Brown \& Wu (1976) for Mo-O bonds: $s(\mathrm{Mo}-\mathrm{O})=[d(\mathrm{Mo}-\mathrm{O}) / 1.882]^{-6}$; in this formula, $s(\mathrm{Mo}-\mathrm{O})$ is the bond strength in valence units, $d(\mathrm{Mo}-\mathrm{O})$ is the observed $\mathrm{Mo}-\mathrm{O}$ bond distance in Ångströms, $1.882 \AA$ corresponds to an $\mathrm{Mo}-\mathrm{O}$ single-bond distance and the exponential parameter -6 is characteristic of the Mo atom. These calculations for atoms Mo1, Mo2 and Mo6 resulted in values of +4.89 (5) , +4.80 (5) and +5.03 (5), which are very close to the ideal value of +5 . For atoms Mo3,

Figure 1
A view of the $\mathrm{Mo}_{3} \mathrm{O}_{13}$ units. Displacement ellipsoids are drawn at the 97% probability level. [Symmetry codes: (v) $x+1, y, z$; (xii) $-x+3, y-\frac{1}{2}$, $-z+\frac{1}{2}$.]

Figure 2
A view of the structure of $\mathrm{La}_{5} \mathrm{Mo}_{6} \mathrm{O}_{21}$. [Symmetry codes: (i) $x-1, y, z$; (ii) $x+\frac{1}{2},-y+\frac{1}{2},-z$; (xiv) $\left.x, y+\frac{1}{2}, z.\right]$

Mo4 and Mo5 forming the Mo_{3} cluster, the calculated oxidation states are +3.86 (4), +4.08 (5) and +3.74 (5), respectively. Consequently, we could evaluate as six the number of electrons per Mo_{3} cluster in $\mathrm{La}_{5} \mathrm{Mo}_{6} \mathrm{O}_{21}$. The La atoms are surrounded by eight, nine or ten O atoms, forming complex polyhedra. The $\mathrm{La}-\mathrm{O}$ distances range from 2.387 (4) to 3.007 (4) \AA.

Experimental

Single crystals of $\mathrm{La}_{5} \mathrm{Mo}_{6} \mathrm{O}_{21}$ were prepared from a stoichiometric mixture of $\mathrm{La}_{2} \mathrm{O}_{3}, \mathrm{MoO}_{3}$ and Mo. The initial mixture (ca 5 g) was cold pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc-welding system. The charge was heated at the rate of $300 \mathrm{~K} \mathrm{~h}^{-1}$ to 2223 K ; the temperature was held for 5 min , then reduced at a rate of $100 \mathrm{~K} \mathrm{~h}^{-1}$ to 1373 K and finally allowed to cool in the furnace.

Table 1
Selected interatomic distances (\AA).

La1-O3 ${ }^{\text {i }}$	2.437 (5)	La5-O2 ${ }^{\text {xi }}$	2.682 (5)
$\mathrm{La} 1-\mathrm{O} 12{ }^{\text {i }}$	2.481 (4)	La5-O13 ${ }^{\text {x }}$	2.702 (5)
La1-O18	2.489 (5)	La5-O5 ${ }^{\text {iv }}$	2.850 (3)
La1-O11 ${ }^{\text {i }}$	2.513 (5)	Mo1-O4	1.797 (4)
La1-O1	2.546 (5)	Mo1-O20	1.915 (4)
$\mathrm{La} 1-\mathrm{O} 4^{\text {ii }}$	2.597 (4)	Mo1-O19 ${ }^{\text {ii }}$	1.947 (4)
$\mathrm{La} 1-\mathrm{O} 21{ }^{\text {ii }}$	2.716 (5)	Mo1-O21	2.002 (4)
La1-O19	2.729 (4)	$\mathrm{Mo} 1-\mathrm{O} 1{ }^{\text {ii }}$	2.033 (4)
La1-O20	2.910 (5)	Mo1-O18	2.090 (4)
La1-O9	2.929 (4)	Mo2-O1	1.877 (5)
$\mathrm{La} 2-\mathrm{O} 11^{\text {i }}$	2.438 (4)	Mo2-O14 ${ }^{\text {iv }}$	1.882 (3)
La2-O3	2.457 (5)	Mo2-O2	1.889 (5)
La2-O1	2.471 (5)	Mo2-O16 ${ }^{\text {i }}$	1.980 (5)
La2-O12	2.494 (5)	Mo2-O12 ${ }^{\text {i }}$	1.994 (4)
La2-O17	2.579 (3)	Mo2-O20	2.236 (4)
$\mathrm{La} 2-\mathrm{O} 7{ }^{\text {iii }}$	2.608 (5)	Mo3-O5 ${ }^{\text {v }}$	1.963 (4)
$\mathrm{La} 2-\mathrm{O} 10^{\text {iii }}$	2.653 (5)	Mo3-O13 ${ }^{\text {xii }}$	1.987 (5)
$\mathrm{La} 2-\mathrm{O}^{\text {iv }}$	2.840 (3)	Mo3-O17	2.013 (4)
La3-O12	2.443 (5)	Mo3-O7	2.025 (5)
La3-O16	2.462 (4)	Mo3-O15 ${ }^{\text {v }}$	2.087 (4)
La3-O6 ${ }^{\text {ii }}$	2.489 (4)	Mo3-O14	2.104 (4)
$\mathrm{La} 3-\mathrm{O} 4{ }^{\text {ii }}$	2.537 (5)	Mo3-Mo4	2.5574 (6)
La3-O1	2.627 (5)	Mo3-Mo5 ${ }^{\text {v }}$	2.5672 (4)
La3-O20	2.643 (4)	Mo4-O11	1.924 (4)
La3-O2	2.658 (5)	Mo4-O3	1.958 (4)
La3-O21 ${ }^{\text {v }}$	2.728 (5)	Mo4-O10	2.016 (5)
La3-O18 ${ }^{\text {ii }}$	2.954 (6)	Mo4-O7	2.048 (4)
La4-O7v	2.536 (5)	Mo4-O15 ${ }^{\text {v }}$	2.060 (3)
La4-O10	2.598 (4)	$\mathrm{Mo} 4-\mathrm{O} 9^{\text {v }}$	2.069 (4)
$\mathrm{La} 4-\mathrm{O} 15^{\text {vi }}$	2.617 (3)	Mo4-Mo5 ${ }^{\text {v }}$	2.5548 (6)
La4-O13	2.622 (5)	Mo5-O17	1.985 (3)
La4-O11	2.636 (5)	Mo5-O5	1.986 (4)
La4-O3v	2.638 (5)	Mo5-O10 ${ }^{\text {i }}$	2.019 (5)
La4-O19 ${ }^{\text {vii }}$	2.648 (5)	Mo5-O8 ${ }^{\text {iii }}$	2.055 (5)
La4-O8	2.749 (5)	Mo5-O15	2.086 (3)
$\mathrm{La} 4-\mathrm{O} 9^{\text {v }}$	2.755 (4)	Mo5-O14	2.110 (4)
$\mathrm{La} 4-\mathrm{O}^{\text {vii }}$	3.007 (4)	Mo6-O6	1.785 (4)
La5-O2	2.387 (4)	Mo6-O9	1.901 (4)
La5-O16	2.442 (5)	Mo6-O8 ${ }^{\text {i }}$	1.961 (4)
La5-O6 ${ }^{\text {viii }}$	2.556 (4)	Mo6-O13 ${ }^{\text {xiii }}$	1.962 (4)
La5-O16 ${ }^{\text {ix }}$	2.627 (5)	Mo6-O21 ${ }^{\text {ii }}$	2.049 (4)
La5-O8 ${ }^{\text {x }}$	2.638 (5)	Mo6-O19	2.073 (4)

[^0]Crystal data
$\mathrm{La}_{5} \mathrm{Mo}_{6} \mathrm{O}_{21}$
Mo $K \alpha$ radiation
$M_{r}=1606.19$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.71550$ (5) £
$b=11.2429$ (1) \AA
$c=25.2146$ (2) \AA
$V=1620.26(2) \AA^{3}$
$Z=4$
$D_{x}=6.584 \mathrm{Mg} \mathrm{m}^{-3}$
Cell parameters from 48314
reflections
$\theta=1-40.3^{\circ}$
$\mu=17.45 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, black
$0.45 \times 0.04 \times 0.03 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer
φ scans $(\kappa=0)$ plus additional ω scans
Absorption correction: analytical (de Meulenaer \& Tompa, 1965)
$T_{\text {min }}=0.116, T_{\text {max }}=0.690$
34498 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.088$
$S=1.07$
9991 reflections
291 parameters
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0307 P)^{2}\right.$
$+6.5608 P]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
9991 independent reflections
9029 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.081$
$\theta_{\text {max }}=40.3^{\circ}$
$h=-10 \rightarrow 10$
$k=-20 \rightarrow 20$
$l=-44 \rightarrow 45$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\max }=4.10 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-4.15 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.00036 (6)
Absolute structure: Flack (1983),
4349 Friedel pairs
Flack parameter: 0.393 (12)

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: EVALCCD (Duisenberg, 1998); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: SHELXL97.

Intensity data were collected on the diffractometer system of the 'Centre de Diffractométrie de l'Université de Rennes I' (http://www.cdifx.univ-rennes1.fr).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: IZ1055). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bergerhoff, G. (1996). DIAMOND. University of Bonn, Germany.
Betteridge, P. W., Cheetham, A. K., Howard, J. A. K., Jakubicki, G. \& McCarroll, W. H. (1984). Inorg. Chem. 23, 737-740.
Brown, I. D. \& Wu, K. K. (1976). Acta Cryst. B32, 1957-1959.
Collins, B. T., Fine, S. M., Potenza, J. A., Tsai, P. P. \& Grennblatt, M. (1989). Inorg. Chem. 28, 2444-2447.
Duisenberg, A. J. M. (1998). PhD thesis, University of Utrecht, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
McCarroll, W. H. (1977). Inorg. Chem. 16, 3351-3353.
McCarroll, W. H., Katz, L. \& Ward, R. (1957). J. Am. Chem. Soc. 79, 54105414.

Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Torardi, C. C. \& McCarley, R. E. (1985). Inorg. Chem. 24, 476-481.

[^0]: Symmetry codes: (i) $x-1, y, z$; (ii) $x+\frac{1}{2},-y+\frac{1}{2},-z$; (iii) $-x+2, y-\frac{1}{2},-z+\frac{1}{2}$; (iv) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (v) $x+1, y, z$; (vi) $-x+2, y+\frac{1}{2},-z+\frac{1}{2}$; (vii) $x+2, y, z$; (viii) $x+1, y-1$, z; (ix) $x-\frac{1}{2},-y-\frac{1}{2},-z$; (x) $x-1, y-1, z$; (xi) $x+\frac{1}{2},-y-\frac{1}{2},-z$; (xii)
 $-x+3, y-\frac{1}{2},-z+\frac{1}{2}$; (xiii) $x-2, y, z$.

