Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

$La_5Mo_6O_{21}$: a novel ternary reduced molybdenum oxide containing $\{Mo^{IV}\}_3$ clusters and isolated Mo^V centres

P. Gall and P. Gougeon*

Laboratoire de Chimie du Solide et Inorganique Moléculaire, UMR–CNRS No. 6511, Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes Cedex, France

Correspondence e-mail: patrick.gougeon@univ-rennes1.fr

Received 1 April 2005 Accepted 13 May 2005 Online 11 June 2005

The crystal structure of La₅Mo₆O₂₁ (pentalanthanum hexamolybdenum henicosaoxide) is made up of Mo₃O₁₃ units containing triangular {Mo^{IV}}₃ clusters, three distorted Mo^VO₆ octahedral units and six interstitial La^{III} atoms. The Mo₃O₁₃ unit consists of three edge-sharing Mo^{IV}O₆ units involving Mo–Mo bonding. The three Mo^VO₆ octahedra share their corners or edges with each other and with the Mo₃O₁₃ units.

Comment

The M_2 Mo₃O₈ compounds (M = Mg, Zn, Fe, Co, Ni, Zn and Cd) were the first identified reduced molybdenum compounds containing Mo₃O₁₃ cluster units made up of three edgesharing octahedral MoO₆ units (McCarroll et al., 1957). In these compounds, the Mo atoms form strongly bonded triangular clusters containing six d electrons that fill three bonding orbitals. Six-electron Mo₃ clusters are also found in the quaternary compounds $LiRMo_3O_8$ (R = Sc, Y, In, Sm, Gd, Tb, Dy, Ho, Er and Yb; McCarroll, 1977). Subsequently, Mo₃ clusters containing seven d electrons were observed in LiZn₂Mo₃O₈ and ScZnMo₃O₈, and clusters containing eight electrons were observed in Zn₃Mo₃O₈ (Torardi & McCarley, 1985). In addition, the Mo₃O₁₃ cluster unit has also been observed in co-existence with the tetrahedral MoO₄ unit in Na₂In₂Mo₅O₁₆ (Collins et al., 1989) and with the octahedral MoO₆ unit in La₃Mo₄SiO₁₆ (Betteridge et al., 1984). In Na₂In₂Mo₅O₁₆, the number of electrons per Mo₃ cluster has been evaluated as six, the Mo atom of the MoO₄ unit having a valence of +6. The present paper reports the synthesis and crystal structure of a new Mo₃O₁₃ cluster compound, La5Mo6O21. The structure of La5Mo6O21 is made up of Mo₃O₁₃ units containing triangular Mo₃ clusters (Fig. 1) and distorted MoO₆ octahedra that are corner- or edge-shared in a complex manner, as shown in Fig. 2. The Mo₃O₁₃ units share atoms O14 and O17 to form infinite chains parallel to the a axis. The Mo-Mo distances within the Mo₃ triangle are 2.5548 (6), 2.5574 (6) and 2.5672 (4) Å, with an average value of 2.560 Å. This value differs from the values of 2.524 (2) and 2.6164 (5) Å found in $Zn_2Mo_3O_8$ and $Na_2In_2Mo_5O_{16}$, respectively, which also contain six d electrons per Mo₃O₁₃ cluster. Furthermore, the shortest intercluster Mo-Mo distance is here 3.1489 (4) Å, compared with 3.1695 (5) and 3.235 (2) Å in Na₂In₂Mo₅O₁₆ and Zn₂Mo₃O₈, respectively. The Mo-O distances around atoms Mo1, Mo2 and Mo6 range from 1.785 (4) to 2.236 (4) Å, while those around the Mo atoms of the Mo₃ cluster are between 1.924 (4) and 2.110 (4) Å. From these Mo-O bonds, we could estimate the oxidation state of each independent Mo atom by using the empirical bondlength-bond-strength relationship developed by Brown & Wu (1976) for Mo–O bonds: $s(Mo–O) = [d(Mo–O)/1.882]^{-6}$; in this formula, s(Mo-O) is the bond strength in valence units, d(Mo-O) is the observed Mo-O bond distance in Angströms, 1.882 Å corresponds to an Mo–O single-bond distance and the exponential parameter -6 is characteristic of the Mo atom. These calculations for atoms Mo1, Mo2 and Mo6 resulted in values of +4.89 (5), +4.80 (5) and +5.03 (5), which are very close to the ideal value of +5. For atoms Mo3,

Figure 1

A view of the Mo₃O₁₃ units. Displacement ellipsoids are drawn at the 97% probability level. [Symmetry codes: (v) x + 1, y, z; (xii) -x + 3, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.]

Figure 2 A view of the structure of La₅Mo₆O₂₁. [Symmetry codes: (i) x - 1, y, z; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, -z$; (xiv) $x, y + \frac{1}{2}, z$.]

Mo4 and Mo5 forming the Mo₃ cluster, the calculated oxidation states are +3.86(4), +4.08(5) and +3.74(5), respectively. Consequently, we could evaluate as six the number of electrons per Mo3 cluster in La5Mo6O21. The La atoms are surrounded by eight, nine or ten O atoms, forming complex polyhedra. The La-O distances range from 2.387 (4) to 3.007 (4) Å.

Experimental

Single crystals of La5Mo6O21 were prepared from a stoichiometric mixture of La₂O₃, MoO₃ and Mo. The initial mixture (ca 5 g) was cold pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc-welding system. The charge was heated at the rate of 300 K h^{-1} to 2223 K; the temperature was held for 5 min, then reduced at a rate of 100 K h^{-1} to 1373 K and finally allowed to cool in the furnace.

Table 1

Selected interatomic distances (Å).

La1-O3 ⁱ	2.437 (5)	La5-O2 ^{xi}	2.682 (5)
La1-O12 ⁱ	2.481 (4)	La5-O13 ^x	2.702 (5)
La1-O18	2.489 (5)	La5-O5 ^{iv}	2.850 (3)
La1-O11 ⁱ	2.513 (5)	Mo1-O4	1.797 (4)
La1-O1	2.546 (5)	Mo1-O20	1.915 (4)
La1-O4 ⁱⁱ	2.597 (4)	Mo1-O19 ⁱⁱ	1.947 (4)
La1-O21 ⁱⁱ	2.716 (5)	Mo1-O21	2.002 (4)
La1-O19	2.729 (4)	Mo1-O18 ⁱⁱ	2.033 (4)
La1-O20	2.910 (5)	Mo1-O18	2.090 (4)
La1-O9	2.929 (4)	Mo2-O1	1.877 (5)
La2-O11 ⁱ	2.438 (4)	Mo2-O14 ^{iv}	1.882 (3)
La2-O3	2.457 (5)	Mo2-O2	1.889 (5)
La2-O1	2.471 (5)	Mo2-O16 ⁱ	1.980 (5)
La2-012	2.494 (5)	Mo2-O12 ⁱ	1.994 (4)
La2-017	2.579 (3)	Mo2-O20	2.236 (4)
La2-O7 ⁱⁱⁱ	2.608 (5)	Mo3-O5 ^v	1.963 (4)
La2-O10 ⁱⁱⁱ	2.653 (5)	Mo3-O13 ^{xii}	1.987 (5)
La2-O5 ^{iv}	2.840 (3)	Mo3-O17	2.013 (4)
La3-O12	2.443 (5)	Mo3-O7	2.025 (5)
La3-O16	2.462(4)	Mo3-O15 ^v	2.087 (4)
La3-O6 ⁱⁱ	2.489 (4)	Mo3-O14	2.104 (4)
La3-O4 ⁱⁱ	2.537 (5)	Mo3-Mo4	2.5574 (6)
La3-O1	2.627 (5)	Mo3-Mo5 ^v	2.5672 (4)
La3-O20	2.643 (4)	Mo4-O11	1.924 (4)
La3-O2	2.658 (5)	Mo4-O3	1.958 (4)
La3-O21 ^v	2.728 (5)	Mo4-O10	2.016 (5)
La3-O18 ⁱⁱ	2.954 (6)	Mo4-O7	2.048 (4)
La4-O7 ^v	2.536 (5)	Mo4-O15 ^v	2.060 (3)
La4-O10	2.598 (4)	Mo4-O9 ^v	2.069 (4)
La4-O15 ^{vi}	2.617 (3)	Mo4-Mo5 ^v	2.5548 (6)
La4-013	2.622 (5)	Mo5-O17	1.985 (3)
La4-011	2.636 (5)	Mo5-O5	1.986 (4)
La4-O3 ^v	2.638 (5)	Mo5-O10 ⁱ	2.019 (5)
La4-O19vii	2.648 (5)	Mo5-O8 ⁱⁱⁱ	2.055 (5)
La4-O8	2.749 (5)	Mo5-O15	2.086 (3)
La4-O9 ^v	2.755 (4)	Mo5-O14	2.110 (4)
La4-O9 ^{vii}	3.007 (4)	Mo6-O6	1.785 (4)
La5-O2	2.387 (4)	Mo6-O9	1.901 (4)
La5-O16	2.442 (5)	Mo6-O8 ⁱ	1.961 (4)
La5-O6 ^{viii}	2.556 (4)	Mo6-O13xiii	1.962 (4)
La5-O16 ^{ix}	2.627 (5)	Mo6-O21 ⁱⁱ	2.049 (4)
La5-O8 ^x	2.638 (5)	Mo6-O19	2.073 (4)
	. ,		()

Symmetry codes: (i) x - 1, y, z; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, -z$; (iii) $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (v) x + 1, y, z; (vi) $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}$; (vii) x + 2, y, z; (viii) x + 1, y - 1, z; (ix) $x - \frac{1}{2}, -y - \frac{1}{2}, -z$; (x) x - 1, y - 1, z; (xi) $x + \frac{1}{2}, -y - \frac{1}{2}, -z$; (xii) $-x + 3, y - \frac{1}{2}, -z + \frac{1}{2}$; (xiii) x - 2, y, z.

Crystal data

Data collection

Nonius KappaCCD diffractometer			
φ scans ($\kappa = 0$) plus additional ω			
scans			
Absorption correction: analytical			
(de Meulenaer & Tompa, 1965)			
$T_{\min} = 0.116, \ T_{\max} = 0.690$			
34 498 measured reflections			

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.001$
$R[F^2 > 2\sigma(F^2)] = 0.036$	$\Delta \rho_{\rm max} = 4.10 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.088$	$\Delta \rho_{\rm min} = -4.15 \text{ e } \text{\AA}^{-3}$
S = 1.07	Extinction correction: SHELXL97
9991 reflections	Extinction coefficient: 0.00036 (6)
291 parameters	Absolute structure: Flack (1983),
$w = 1/[\sigma^2(F_0^2) + (0.0307P)^2$	4349 Friedel pairs
+ 6.5608 <i>P</i>]	Flack parameter: 0.393 (12)
where $P = (F_0^2 + 2F_c^2)/3$	

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: EVALCCD (Duisenberg, 1998); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: SHELXL97.

Mo $K\alpha$ radiation

reflections

 $\mu = 17.45 \text{ mm}^{-1}$ T = 293 (2) K

 $0.45 \times 0.04 \times 0.03 \text{ mm}$

9991 independent reflections

9029 reflections with $I > 2\sigma(I)$

Needle, black

 $R_{\rm int}=0.081$

 $\theta_{\rm max} = 40.3^{\circ}$ $h = -10 \rightarrow 10$

 $k = -20 \rightarrow 20$

 $l = -44 \rightarrow 45$

 $\theta = 1 - 40.3^{\circ}$

Cell parameters from 48 314

Intensity data were collected on the diffractometer system of the 'Centre de Diffractométrie de l'Université de Rennes I' (http://www.cdifx.univ-rennes1.fr).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: IZ1055). Services for accessing these data are described at the back of the journal.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Bergerhoff, G. (1996). DIAMOND. University of Bonn, Germany.
- Betteridge, P. W., Cheetham, A. K., Howard, J. A. K., Jakubicki, G. & McCarroll, W. H. (1984). Inorg. Chem. 23, 737-740.
- Brown, I. D. & Wu, K. K. (1976). Acta Cryst. B32, 1957-1959.
- Collins, B. T., Fine, S. M., Potenza, J. A., Tsai, P. P. & Grennblatt, M. (1989). Inorg. Chem. 28, 2444-2447.
- Duisenberg, A. J. M. (1998). PhD thesis, University of Utrecht, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- McCarroll, W. H. (1977). Inorg. Chem. 16, 3351-3353.
- McCarroll, W. H., Katz, L. & Ward, R. (1957). J. Am. Chem. Soc. 79, 5410-5414
- Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Torardi, C. C. & McCarley, R. E. (1985). Inorg. Chem. 24, 476-481.